テキストデータについて
テキストデータには、半月平均データを元にした日本の各県の領域平均値(あるいは世界の各国・領域)と、いくつかの陸域観測サイトについての画素を抽出したデータが含まれています。また、このデータはJASMESホームぺージのグラフの元データとなっています。
1. Japan area data:
text data
format:
read(10,'(i4,3(1x,i2),80f7.2)')
year,month,day_min,day_max,(par_average(k),k=1,49),(site_samples(k),k=1,nloc)
# pav: japan(1), prefecture ID+1:2~48, forign country(49),valsites(50~80)
# Prefectures (ID name)
# 00
All Japan
# 01 Hokkaido
# 02 Aomori
# 03
Iwate
# 04 Miyagi
# 05 Akita
# 06 Yamagata
#
07 Fukushima
# 08 Ibaraki
# 09 Tochigi
# 10
Gunma
# 11 Saitama
# 12 Chiba
# 13 Tokyo
#
14 Kanagawa
# 15 Niigata
# 16 Toyama
# 17
Ishikawa
# 18 Fukui
# 19 Yamanashi
# 20
Nagano
# 21 Gifu
# 22 Shizuoka
# 23 Aichi
#
24 Mie
# 25 Shiga
# 26 Kyoto
# 27 Osaka
# 28
Hyogo
# 29 Nara
# 30 Wakayama
# 31 Tottori
#
32 Shimane
# 33 Okayama
# 34 Hiroshima
# 35
Yamaguchi
# 36 Tokushima
# 37 Kagawa
# 38
Ehime
# 39 Kohchi
# 40 Fukuoka
# 41 Saga
#
42 Nagasaki
# 43 Kumamoto
# 44 Ooita
# 45
Miyazaki
# 46 Kagoshima
# 47 Okinawa
# 48 Forign
country areas
# val sites: 1-31
# 45.0500,
142.1000, ! TSE
# 45.2786,
127.5784, ! LSH
# 44.3842,
142.3186, ! MBF
# 44.3219,
142.2614, ! MMF
# 42.9900,
141.3875, ! HEF
# 42.9868,
141.3853, ! SAP
# 42.7370,
141.5186, ! TMK
# 42.4333,
142.4833, ! SZN
# 40.0017,
140.9375, ! API
# 37.7500,
127.1500, ! GDK
# 37.0667,
126.0333, ! har
# 36.9167,
139.9667, ! NSS
# 36.5500,
140.1333, ! NFT
# 36.4000,
138.5833, ! KZW
# 36.2114,
139.9474, ! SJP
# 36.1462,
137.4231, ! TKY
# 36.1397,
137.3708, ! TKC
# 36.1138,
140.0944, ! TGF
# 36.0540,
140.0269, ! MSE
# 35.8693,
139.4903, ! KWG
# 35.4514,
138.7653, ! FJY
# 35.4333,
138.7500, ! FHK
# 35.2500,
137.0667, ! SMF
# 34.9619,
135.9958, ! KEW
# 34.7948,
135.8462, ! YMS
# 34.7349,
134.3743, ! AKO
# 34.5500,
126.5700, ! HFK
# 34.5345,
133.9302, ! yhm
# 33.1370,
130.7095, ! KHW
# 31.9667,
130.9333, ! KBY
# 31.7347,
131.0139/ ! kmtc
2. Global area data
text data
format:
read(10,'(i4,3(1x,i2),80f7.2)')
year,month,day_min,day_max,(pav(k),k=1,238)
# pav(1):
countries (1~141),ocean areas(142~238)
Countries :
1 Global Both
hemisphere
2 Global Northern
hemisphere
3 Global Southern hemisphere
4
E_Asia S_Korea
5 E_Asia China
6
E_Asia N_Korea
7 E_Asia Japan
8
E_Asia Mongolia
9 E_Asia Taiwan
10
SE_Asia Indonesia
11 SE_Asia Cambodia
12
SE_Asia Thailand
13 SE_Asia Philippines
14
SE_Asia Negara Brunei Darussalam
15
SE_Asia Vietnam
16 SE_Asia Malaysia + Singapore
17
SE_Asia Myanmar (Burma)
18 SE_Asia Laos
19
S_Asia India
20 S_Asia Sri Lanka
21
S_Asia Nepal
22 S_Asia Pakistan
23
S_Asia Bangladesh
24 S_Asia Bhutan
25
S_Asia Others
26 C_Asia Uzbekistan
27
C_Asia Kazakhstan
28 C_Asia Kyrgyz
29
C_Asia Tajikistan
30 C_Asia Turkmenistan
31
W_Asia Afghanistan
32 W_Asia Iran
33
W_Asia Turkey
34 W_Asia Others
35
N_Africa Algeria
36 N_Africa Egypt
37
N_Africa Tunisia
38 N_Africa Morocco+Western
Sahara
39 N_Africa Libya
40
Saharan_Des Sudan
41 Saharan_Des Chad
42
Saharan_Des Niger
43 Saharan_Des Mali
44
Saharan_Des Mauritania
45 Guinea_Bay Ghana
46
Guinea_Bay Cote d'Ivoire
47 Guinea_Bay Senegal
48
Guinea_Bay Nigeria
49 Guinea_Bay Burkina Faso
50
Guinea_Bay Others_9
51 Tropical_Africa Republic of
Gabon
52 Tropical_Africa Cameroon
53
Tropical_Africa Republic of Congo
54
Tropical_Africa Democratic Republic of the Congo
55
Tropical_Africa Republic of Equatorial Guinea
56
Tropical_Africa Central Africa
57 S_Africa Angora
58
S_Africa Zambia
59 S_Africa Zimbabwe
60
S_Africa Namibia
61 S_Africa Botswana
62
S_Africa South Africa
63 S_Africa Mozambique
64
S_Africa Others_3
65 E_Africa Ethiopia Eritrea
66
E_Africa Kenya
67 E_Africa Somalia
68
E_Africa Tanzania
69 E_Africa Others_4
70
Africa_Indian_O Madagascar
71
Africa_Indian_O Other_4_Islands
72
Europe_Union Ireland
73 Europe_Union United
Kingdom
74 Europe_Union Italy
75
Europe_Union Estonia
76 Europe_Union Austria
77
Europe_Union Greece
78 Europe_Union Sweden
79
Europe_Union Spain
80 Europe_Union Slovakia
81
Europe_Union Slovenija
82
Europe_Union Czechoslovakia
83
Europe_Union Denmark
84 Europe_Union Germany
85
Europe_Union Hungary
86 Europe_Union Finland
87
Europe_Union France
88 Europe_Union Bulgaria
89
Europe_Union Poland
90 Europe_Union Portugal
91
Europe_Union Latvia
92 Europe_Union Lithuania
93
Europe_Union Rumania
94 Europe_Union Be_Ne_Lux
95
Europe_Union Other EU
96 Non_EU Iceland
97
Non_EU Azerbaijan
98 Non_EU Albania
99
Non_EU Armenia
100 Non_EU Ukraine
101
Non_EU Georgia
102 Non_EU Croatia
103
Non_EU Switzerland
104 Non_EU Serbia and
Montenegro
105 Non_EU Norway
106
Non_EU Belarus
107 Non_EU Bosnia and Hercegovina
108
Non_EU Macedonia
109 Non_EU Moldova
110
Non_EU Other_Non_EU
111 Russia W_Russia
112
Russia W_Siberia
113 Russia C_Siberia
114
Russia E_Siberia
115 Russia F_E_Russia
116
N_America U.S.Mainland+Hawaii
117
N_America U.S.Alaska
118 N_America Canada
119
N_America Mexico
120 N_America Others
121
S_America Argentina
122 S_America Uruguay
123
S_America Ecuador
124 S_America Guyana
125
S_America Colombia
126 S_America Surinam
127
S_America Dust
128 S_America Paraguay
129
S_America Brazil
130 S_America Venezuela
131
S_America Peru
132 S_America Bolivia
133
S_America Guiana (French)
134 S_America Others(Falkland
Islands)
135 Oceania Australia
136 Oceania New
Zealand
137 Oceania Other_Islands
138
Polar_north Greenland
139 Polar_south Antarctic
140
Polar_islands Subaru Byrd Jan Mayen
141
Off_Shore_Islands Canary South_Georgia St_Helena
3. Thai area data
text data
format:
read(10,'(i4,3(1x,i2),80f7.2)')
year,month,day_min,day_max,(pav(k),k=1,148)
# pav(1):
countries (1~141),ocean areas(142~148)
Countries (same as the global data)
val sites:
# 18.423 ,
99.720 , ! 380m MaeMoh plantation (MMP)
# 16.4500,
102.5330, ! Khon Kaen
# 14.5763, 98.8439, ! 231m, Mae
Klong (MKL)
# 14.4924, 101.9163, ! 543m, Sakaerat
(SKR)
# 2.9667, 102.3000, ! 112m, Pasoh Forest Reserve
(PSO)
# -0.8614, 117.0447, ! 20m, Bukit Soeharto (BKS)
#
-2.3450, 114.0364/ ! Palangkaraya (PDF)